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Abstract
The vastly increasing number of neuro-muscular simulation studies (with increasing num-

bers of muscles used per simulation) is in sharp contrast to a narrow database of necessary

muscle parameters. Simulation results depend heavily on rough parameter estimates often

obtained by scaling of one muscle parameter set. However, in vivomuscles differ in their

individual properties and architecture. Here we provide a comprehensive dataset of

dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per mus-

cle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For

completeness we provide the dynamic muscle properties for further important shank mus-

cles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per mus-

cle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius

is about twice that of soleus, while plantaris showed an intermediate value. The force-veloc-

ity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus.

Although the muscles vary greatly in their three-dimensional architecture their mean penna-

tion angle and normalized force-length relationships are almost similar. Forces of the mus-

cles were enhanced in the isometric phase following stretching and were depressed

following shortening compared to the corresponding isometric forces. While the enhance-

ment was independent of the ramp velocity, the depression was inversely related to the

ramp velocity. The lowest effect strength for soleus supports the idea that these effects

adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g.

force-length and force-velocity relations, force elongation relations of passive components),

enhancement and depression effects, and 3D muscle architecture of calf muscles provides

valuable comprehensive datasets for e.g. simulations with neuro-muscular models, devel-

opment of more realistic muscle models, or simulation of muscle packages.
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Introduction
About 600 skeletal muscles enable complex movements like locomotion or laughing in
humans. Musculoskeletal models with an increasing number of muscles have been used to
investigate human and animal movements [1–4]. Although many phenomenological Hill-type
[5–8] and biophysical [9, 10] muscle models have been developed to represent the dynamics of
isolated muscles, the phenomenological modeling approach dominates in musculoskeletal
modeling for simplicity and low computational cost. Because individual muscle parameters are
lacking, a common approach in such studies is to scale one set of muscle parameters, e.g. by
maximum isometric force and fiber length, to fit all muscles [2–4]. However, muscles differ in
their individual muscle properties not only by scale, and these differences impact simulation
results [11].

The active contractile properties of muscle fibers can be characterized by the hyperbolic
force–velocity relation [5] and the force-length relation [12]. It has generally been found that
slow twitch fibers exhibit a more bent force–velocity relation and lower maximum shortening
velocity than fast ones [13]. Moreover, it is known that muscles exhibit a complex architecture
consisting of fascicles with different lengths and pennation angles [14–16]. The specific archi-
tecture influences the shape of the muscle’s force-length relation [17]. Thus, simple scaling of
these relations introduces errors of unknown magnitude. A broader database of lumped muscle
model parameters for specific muscles would improve the situation; in parallel, development of
more realistic three-dimensional (3D) muscle models requires individual muscle architecture
as input [18–20].

Passive muscle properties vary considerably between muscles too [21]. For instance, passive
forces of frog gastrocnemius arise already on the ascending limb of the force–length relation
and reach about 30% maximum isometric force (Fim) at optimal muscle length [22]. In con-
trast, passive forces of the frog semitendinosus muscle arise on the descending limb of the
force-length relation [23]. Depending on muscle function tendons exhibit different mechanical
properties [24], e.g. the tendon of the human wrist moverM. extensor carpi radialis longus
used for positioning tasks is very stiff (1.8% strain at Fim, [25]) compared with the more com-
pliant human gastrocnemius tendon exploited for elastic recoil (5% strain at Fim, [26]).

In Hill-type muscle models, the active contractile properties of the fibers are represented by
a contractile component (CC). Its length is usually taken to be the mean optimal fiber length,
and sometimes the mean pennation angle is considered [6]. Passive tissues in parallel to the
fibers like connective tissue and titin (though titin may be considered to be a semi-active ele-
ment, [27]) can be represented by a parallel elastic component (PEC). Tendon and aponeurosis
thought to act in series with the fibers [22] are represented by a serial elastic component (SEC).
In the structurally more convincing arrangement of these three components [28] the SEC is in
series to both the CC and the PEC (Fig 1). Typical constitutive functions describing the compo-
nents are depicted in Fig 1.

Since more than 60 years it is known that muscle force further depends on contraction his-
tory [30]. For example, force is enhanced in the isometric phase following active stretching
(force enhancement, FE) and depressed following active shortening (force depression, FD)
compared with the corresponding isometric muscle force. Force enhancement effects can be
much larger (2 Fim at lengths with no filament overlap, [31]) than force depression effects
(0.05–0.2 Fim, [30, 32]). Currently, the causes of these history effects remain a matter of scien-
tific debate [8, 33–35]. Discussed mechanisms are e.g. the contribution of half-sarcomere chain
dynamics [34, 36, 37] or non-cross-bridge contributions to muscle tension [27, 31, 38]. Muscle
specific differences in contraction history are rarely examined, particularly as experimental
protocols and conditions differ, which hampers comparison.

Rabbit Calf Muscle Properties

PLOS ONE | DOI:10.1371/journal.pone.0130985 June 26, 2015 2 / 20



www.manaraa.com

The calf musculature is frequently used as a research object in muscle experiments and sim-
ulations (gastrocnemius (GAS), soleus (SOL) and/or plantaris (PLA); e.g. [21, 39–41]). These
distal muscles enable comparably easy surgical access, and their long distal tendons simplify
fixation to force measurement equipment in animal models. Some of these muscles were
observed in recent in vivo studies with respect to their 3D behavior [42, 43]. Understanding e.
g. 3D muscle deformations and related force effects in muscle packages by neuromuscular sim-
ulations requires consistent specific muscle properties and muscle architectures. Gained
insights into fundamental 3D muscle functions may then be generalized which makes the col-
lection of comprehensive data sets important from a clinical perspective. To our knowledge,
such comprehensive consistent muscle properties are not available for the calf musculature.

The aim of this study is to provide comprehensive data sets of specific muscle properties
(force-length relation, force-velocity relation, force-strain relations of SEC and PEC, activation
time constant) and the 3D architecture of the superficial rabbit calf muscles for future research.
To achieve this, we determine muscle properties of GAS, PLA, and SOL in in situ experiments
(n = 6 per muscle) and measure the 3D architecture by manual digitization ([16]; n = 3 per
muscle). Because there is no generally accepted model of history effects, we provide standard-
ized data for force enhancement and force depression (n = 3 per muscle) which can be used to
adapt parameters of custom models describing these effects. Striving for completeness with
respect to the shank musculature (Fig 2), we provide the muscle properties for further shank
muscles (flexor digitorum longus (FDL), extensor digitorum longus (EDL) and tibialis anterior
(TA), n = 1).

Fig 1. Hill-typemuscle model and associated muscle properties. The muscle model [28, 29] for which the parameters are determined in this study
consists of a contractile component (CC), a serial elastic component (SEC) and a parallel elastic component (PEC). Muscle components and associated
muscle properties (force-velocity relation, force-length relation, activation-time relation, force-elongation relation of SEC and PEC) are marked with the same
background color. Corresponding model parameters are explained in section 2.3.

doi:10.1371/journal.pone.0130985.g001
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Fig 2. Schematic of the rabbit calf muscles. (A) Medial view of the left pelvic limb and the calf muscles whose dynamic muscle properties and architecture
have been determined (GAS, PLA, SOL). The grey dashed line marks the transversal cross-section of the limb shown in (B). For the grey muscles (FDL,
EDL, and TA), only dynamic muscle properties were determined (see Supporting Information, S1 Text). White muscles (**peronaeimuscles, *M. extensor
hallucis longus) were not examined. The axes are shown for orientation.

doi:10.1371/journal.pone.0130985.g002
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Methods

2.1 Experimental setup
Experiments on female New Zealand white rabbits (Oryctolagus cuniculus, n = 21, age: about
16 weeks) with an average weight of 3.37 ± 0.51 kg (mean ± SD, Table 1) were carried out in
strict accordance with the recommendations of the German animal welfare law (Tierschutzge-
setz, BGBl. I 1972, 1277, section 8). The protocol of this study was approved by the competent
authority for animal welfare in Thuringia, Germany (Landesamt für Verbraucherschutz
(Abteilung Gesundheitlicher und technischer Verbraucherschutz); Permit Number: 02-022/11
and 02-027/14). All experiments were performed under anesthesia with natrium pentobarbital
(Nembutal, 80 mg/kg body weight) and Bupivacain (1 ml, 0.5%, epidural), and all efforts were
made to minimize suffering. Experimental setup, anesthesia and preparation of rabbit SOL
have been described earlier [43]. Procedures were similar for all muscles analyzed in this study
(Table 1). In short, the specific muscle was freed from its surrounding tissues and the rabbit
was fixed by clamping hip, knee and ankle with three pairs of bone pins. The distal tendon was
attached horizontally to a muscle lever system (Aurora scientific 310B-LR). The sciatic nerve
was stimulated (Aurora Scientific 701C) with 100 μs square wave pulses at 100–140 Hz (supra-
maximal tetanic muscle stimulation). Body temperature was maintained at 39°C using a heat-
ing pad. The muscle was sprinkled with heated (39°C) physiological saline solution during the
entire experiment.

2.2 Experiments for determination of muscle properties
First, the muscle-tendon complex length (LMTC_0) was measured in situ with a micrometer at
an ankle and knee joint angle of 90° (Table 1). To determine the specific muscle properties
(force-length relation, force-velocity relation, force-strain relation of the SEC and PEC, and
activation time constant), isometric, isotonic and isokinetic contractions were performed. We
identified the force-velocity relation by a series of about 10 isotonic contractions against forces
in the range of 0.1 Fim to 0.9 Fim. Similar to [44], the force-strain relation of the SEC was
obtained from the length tension data of a quick (exceeding maximum contraction velocity
vCCmax) isokinetic contraction accounting for fiber shortening. The active force-length relation
of the CC and the force-strain relation of the PEC were determined from a series of 15–20 iso-
metric contractions (with length increments of 1–2 mm) considering the interaction of the pas-
sive elastic structures [28]. The activation parameter τ, describing calcium concentration and
thus muscle activation, was determined from an isometric contraction at optimal muscle length
using a Hill-type model [29]. For details of these parameter determinations, see [29, 45].

Table 1. Specifications of observedmuscles.

Muscle GAS PLA SOL FDL EDL TA

Dynamic muscle properties (n) 6 6 6 1 1 1

animal mass [kg] 3.02 ± 0.39 3.27 ± 0.22 3.89 ± 0.47 2.76 3.52 3.38

muscle mass [g] 16.04 ± 1.32 6.31 ± 0.74 3.26 ± 0.32 4.78 4.77 3.52

LMTC_0 [mm] 118.2 ± 6.2 112.0 ± 6.6 102.9 ± 2.0 104.2 103.4 91.9

3D muscle architecture (n) 3 3 3 N/A N/A N/A

animal mass [kg] 3.28 ± 0.17* 3.28 ± 0.17* 3.28 ± 0.17* N/A N/A N/A

Muscle and animal mass as well as the muscle-tendon complex length LMTC_0 measured at ankle and knee joint angles of 90° (cf. Fig 1). n: number of

muscles.

*Architecture of GAS, PLA, and SOL was determined from the left legs of three rabbits.

doi:10.1371/journal.pone.0130985.t001
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History effects were identified for GAS, PLA, and SOL (n = 3 per muscle) using isokinetic
ramps [32] with three different shortening / lengthening velocities (0.35, 0.7, and 1.4 lfm/s,
where lfm is the mean fascicle length determined by manual digitization; see section 2.4), and a
ramp length of 0.3 lfm. The isokinetic ramp started after an isometric pre-contraction (200 to
400 ms) which was sufficient to reach maximum isometric force. After the end of the ramp,
stimulation continued (SOL: 1300 ms; other muscles: 500 ms) to allow sufficient force recovery
during the subsequent isometric phase. Longer continued stimulation was used for SOL
because this slow twitch fibered muscle [46] is more fatigue resistant than the other muscles.
Shortening and lengthening ramps for determination of force depression and force enhance-
ment started at optimum muscle length plus 0.15 lfm and minus 0.15 lfm, respectively. Force
depression and force enhancement were identified as the difference in force between the force
at the end of the ramp experiment and the force at the end of an isometric reference contrac-
tion of same duration at the same target length. For FDL, EDL, and TA no muscle architecture
and thus no mean fascicle length (lfm) was determined. Thus, for these muscles isokinetic
ramps had velocities of 5, 10 and 20 mm/s starting at optimum muscle length plus 2 mm (force
depression) and minus 2 mm (force enhancement) with a ramp length of 4 mm.

2.3 Hill-type muscle model
Parameters were determined for a typical Hill-type muscle model [29] consisting of a PEC in
parallel to the CC, and a SEC connected to both of them. Using this model, the active force gen-
erated by the contractile component Fcc is the difference between the single forces in the SEC
and the PEC and can be described by a typical product approach [6]:

FCC ¼ FSEC � FPEC ¼ A � Fim � flðlCCÞ � fvðvCCÞ: ð1Þ

In Eq (1), A is the muscle activation and fl as well as fv are factors that describe the force–
length and force–velocity relations normalized to Fim, respectively.

The CC force-length relationship was described with a piecewise linear equation

flðlCCÞ ¼

fc
l2 � l1

� ðlCC � l1Þ; l1 � lCC � l2

fc þ
fc � 1

l2
� ðlCC � l2Þ; l2 < lCC � lCCopt

1; lCCopt < lCC � l3

1þ �1

l4 � l3
� ðlCC � l3Þ; l3 < lCC � l4

ð2Þ

8>>>>>>>>>><
>>>>>>>>>>:

where fc is the force at which the ascending limb changes slope, lCC is the CC length, lCCopt the
optimal CC length and l1, l2, l3, l4 are specific lengths that are crucial for the sarcomere force-
length relationship (Fig 1).

The force-velocity relationship

fvðvCCÞ ¼
vCCmax � vCC

vCCmax þ vCC=curv
vCC < 0; ð3Þ

follows the Hill hyperbola [5] for concentric contractions, with vCCmax being the maximal CC
shortening velocity, and curv = a/Fim (damping increases with decreasing curv, see Fig 1; a
describes the force asymptote [5]) is an inverse measure of the relation’s curvature.
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The latency between the supramaximal stimulation and the muscle activation was modelled
as a first order linear differential equation [47]

dA
dt

¼ 1� A
t

ð4Þ

where the activation parameter τ lumps the time constants of calcium influx from the sarco-
plasmic reticulum into the sarcoplasm, and A(t = 0) = 0.

The SEC force-elongation relationship FSEC(ΔlSEC) was taken from [6]

FSECðDlSECÞ ¼
F1

eksh � 1
� e

ksh � DlSEC
DlSEC1 � 1

0
B@

1
CA; 0 < DlSEC < DlSEC1

FSECðDlSECÞ ¼ F1 þ k � ðDlSEC � DlSEC1Þ; DlSEC1 � DlSEC

ð5Þ

where ΔlSEC1 and F1 are the elongation and the force at which the force-elongation relation
changes from exponential to linear. k was calculated from ΔlSEC1, F1, the dimensionless shape
parameter ksh and the constraint that stiffness at ΔlSEC = ΔlSEC1 is the same for each equation.

A PEC force-elongation relation

FPECðDlPECÞ ¼ k1 � ðek2 �DlPEC � 1Þ; if DlPEC > 0 ð6Þ
depending on k1 and k2 was taken from [48].

2.4 Determination of muscle architecture
Muscle architecture of GAS, PLA, and SOL was determined from the left legs of three rabbits
(R1 to R3,m = 3.28 ± 0.17 kg) by manual digitization [16, 43]. After the rabbit was killed with
an overdose of pentobarbital, the leg was amputated above the knee. The skin was removed
and the preparation fixed in Bouin solution (an aqueous solution of picric acid, acetic acid and
formaldehyde minimizing tissue shrinkage [49, 50]) for 48 h [14] at knee and ankle angles of
about 79° and 93°, respectively. Subsequently, the bone–muscle preparation was cast in wax to
provide additional mechanical stability during the digitizing process. For the digitization of the
whole muscle architecture of each muscle, small fascicle bundles were successively dissected
with a micro forceps. Their original position was then recorded using a manual 3D digitizer
(MicroScribe MLX) with a sampling frequency of 5 Hz and an accuracy of 0.07 mm. This pro-
cess was repeated until all fascicles of the individual muscle were recorded. Each fascicle was
described by 20 points. During the dissection and the digitizing, the palm of the hand holding
the digitizer-handpiece was placed on the preparation-table to minimize movement of the dig-
itizer tip (< 0.1 mm). Fascicle length and pennation angle were calculated as described in [16].
In addition to recording the fascicle bundle positions, the insertions and origins of the muscles
were recorded for each animal (S1, S5, and S9 Datasets).

2.5 Statistics
Prior to analysis, muscle parameters were normalized using pertinent units. Parameters were
tested for normal distribution using the Kolmogorov-Smirnov-Test with Lilliefors correction.
All data were normally distributed. The Levené test was used to check variance homogeneity.
To test whether muscle properties differ between the muscles (GAS, PLA, SOL) an analysis of
variance (ANOVA) was calculated. In case that the ANOVA demonstrated significant main
effects, post hoc analyses were performed using the Tukey HSD test if variances were homoge-
nous. Otherwise the Tamhane test was used. The significance level was set at P< 0.05. All
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analyses were performed using SPSS 22 (IBM Corp, Armonk, NY, USA). The effect sizes f were
calculated as

f ¼ sm

s
; ð7Þ

where σm is the standard deviation of the population means, and σ the within-population stan-
dard deviation [51]. The effect sizes were classified as low (f = 0.1), medium (f = 0.25) and large
(f> 0.40) [51].

Results

3.1 Muscle properties
Active and passive muscle properties vary considerably between GAS, PLA, and SOL. We
found significant differences for the parameters lCCopt, vCCmax, curv, ΔlSEC1/lSEC0, k, lSEC0, and
lPEC0 (Table 2). All experimental force–velocity relationships feature the typical hyperbolic
shape (Fig 3, second row) observed by [5]. Maximum shortening velocity of GAS (13.5 ± 1.7
lCCopt/s) is about twice the value of SOL (6.4 ± 1.0 lCCopt/s). Maximum shortening velocity of
PLA (10.1 ± 3.3 lCCopt/s) is in between these values. The curv values of the force-velocity rela-
tion are similar for GAS and PLA (0.47 ± 0.09 and 0.41 ± 0.16, respectively) but about three
times the value for SOL (0.15 ± 0.05). The calf muscles exhibited a characteristic force–length
dependency (Fig 3, upper row) which is attributable to the muscle fiber force–length relation-
ship [12]. Maximum isometric forces produced at optimum muscle lengths by GAS, PLA, and
SOL are 161.3 ± 18.2 N, 86.4 ± 21.3 N, and 24.1 ± 5.8 N, respectively. Considering a muscle tis-
sue density of 1.056 g/cm3 [52], as well as a mean muscle mass (Table 1) and mean optimal
fiber length (Table 2), the cross-sectional area (CSA) can be calculated (GAS: 8.63 cm2, PLA:
4.57 cm2, SOL: 1.44 cm2). This leads to similar mean muscle stresses of 18.9, 18.8, and 17.0 N/
cm2 for GAS, PLA, and SOL, respectively. Optimum fiber lengths of SOL (22.1 ± 4.5 mm) are
longer than those of PLA (13.2 ± 1.3 mm) enabling a much larger working range of SOL. Series
and parallel elastic components possess typical [6] nonlinear force–strain characteristics (Fig
3). The standard deviations of the determined muscle properties are small, with the exception
of the force–strain relation of the parallel elastic component (Fig 3, bottom row) which is about
three times the standard deviation observed for the SEC.

Forces of GAS, PLA, and SOL were enhanced following stretching and were depressed fol-
lowing shortening compared with the corresponding isometric forces (Table 2, Fig 4). For all
muscles, force depression was inversely related to the ramp velocity (Table 2). This effect was
pronounced for the SOL. In contrast, force enhancement was independent of ramp velocity.
The magnitude of force enhancement increased from GAS (� 8% Fim), to SOL (� 11% Fim) up
to PLA (� 17% Fim). At the slowest ramp velocity (0.35 lfm/s), force depression of GAS and
PLA (� 17.5% Fim) was about two fold that of SOL (9.7% Fim).

We report additionally obtained muscle properties of further shank muscles (FDL, EDL,
TA; n = 1) for completeness in the Supporting Information (S1 Text).

3.2 Architecture
General architectural properties of GAS, PLA, and SOL are listed in Table 3. Spatial coordi-
nates of the fascicles of rabbit R1 are presented in Fig 5. Three dimensional fascicle data includ-
ing origin and insertion of the GAS, PLA, and SOL of the three animals (R1, R2, R3) are
provided in txt-format in the Supporting Information (S1–S12 Datasets). SOL (Fig 5, green fas-
cicles) exhibits simple unipennate muscle architecture while GAS (medialis: light red fascicles;
lateralis: yellow fascicles) and PLA (dark red fascicles) show more complex bipennate muscle
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architectures. For each animal, the mean pennation angles of all three muscles (GAS, PLA, and
SOL) were almost similar (Table 3). Differences appear to be about 1–2°, only. In between the
different animals, variations were slightly larger. Mean pennation angles in R1 are about 5°
larger than in R3. These variations in pennation angles have only small (< 0.02 Fim) impact on
the calculation of muscle force. Mean fascicle lengths (lfm) are larger for the heavier animals
(R2 and R3). For each specific animal, GAS and SOL exhibit about the same mean fascicle
lengths but in general PLA is about 30% shorter.

Discussion
Experiments performed within this study provide comprehensive data sets for the rabbit calf
muscles GAS, PLA, and SOL consisting of manually digitized 3D muscle architectures and spe-
cific muscle properties including the quantification of history effects.

Table 2. Muscle parameters of GAS, PLA, and SOL.

Muscle GAS PLA SOL

Parameter mean ± S.D. mean ± S.D. mean ± S.D. p f-value

fl l1 /lCCopt 0.44 ± 0.11 0.53 ± 0.06 0.50 ± 0.05 ns -

l2 /lCCopt 0.82 ± 0.07 0.88 ± 0.04 0.82 ± 0.03 ns -

l3 /lCCopt 1.14 ± 0.03 1.19 ± 0.07 1.14 ± 0.04 ns -

l4/lCCopt 2.21 ± 0.21 2.05 ± 0.21 1.95 ± 0.42 ns -

fc [Fim] 0.85 ± 0.08 0.85 ± 0.07 0.85 ± 0.05 ns -

Fim / CSA [N/cm2] 18.9 ± 3.3 18.8 ± 3.1 17.0 ± 4.3 ns -

lCCopt [mm] 17.7 ± 1.1 13.2 ± 1.3 22.1 ± 4.5 0.01 (*,†) 1.30

fv vCCmax [lCCopt/s] 13.5 ± 1.7 10.1 ± 3.3 6.4 ± 1 0.01 (†,#) 1.29

curv 0.47 ± 0.09 0.41 ± 0.16 0.15 ± 0.05 0.01 (†,#) 1.25

A τ [s] 0.06 ± 0.03 0.06 ± 0.03 0.04 ± 0.01 ns -

SEC F1 /Fim 0.31 ± 0.06 0.31 ± 0.09 0.43 ± 0.14 ns -

ΔlSEC1/lSEC0 0.049 ± 0.009 0.036 ± 0.006 0.026 ± 0.004 0.00 (*,#) 1.42

ksh 2.2 ± 0.3 2.6 ± 0.5 2.7 ± 0.7 ns -

k [N/mm] 30.3 ± 1.4 21.9 ± 4.9 14.1 ± 2.7 0.00 (*,†,#) 2.01

lSEC0 [mm] 105.3 ± 5.2 102 ±5.6 86.9 ± 2.7 0.00 (†,#) 1.79

PEC k1 [N] 0.048 ± 0.057 0.114 ± 0.171 0.034 ± 0.031 ns -

k2 [mm-1] 0.50 ± 0.18 0.47 ± 0.17 0.35 ± 0.12 ns -

lPEC0 [mm] 12.9 ± 2.9 9.8 ± 1.9 16.0 ± 1.8 0.00 (*,†,#) 1.41

FD FD0.35 [%Fim] 17.3 ± 0.9 17.8 ± 4.8 9.7 ± 1.2

FD0.7 [%Fim] 16.6 ± 0.7 15.4 ± 4.0 8.0 ± 0,9

FD1.4 [%Fim] 16.0 ± 0.7 14.6 ± 3.9 5.8 ± 1.5

FE FE0.35 [%Fim] 7.7 ± 1.6 17.1 ± 9.6 11.3 ± 1.5

FE0.7 [%Fim] 7.7 ± 1.4 17.0 ± 9.8 11.3 ± 1.7

FE1.4 [%Fim] 7.7 ± 1.6 17.0 ± 8.7 11.2 ± 1.3

Mean and standard deviation of muscle specific properties; fl: force-length relation, fv: force-velocity relation, A: muscle activation, SEC: series elastic

component, PEC: parallel elastic component. Force depression (FD) and force enhancement (FE) were determined for three different velocities (0.35, 0.7,

and 1.4 mean fascicle lengths per second). Significant differences are marked as follows

* p < 0.05 between GAS and PLA

† p < 0.05 between PLA and SOL

# p < 0.05 between SOL and GAS.

ns means not significant. The effect sizes were classified as low (f = 0.1), medium (f = 0.25) and large (f > 0.40) [51]. No statistics was performed for FD

and FE due to small sample size (n = 3).

doi:10.1371/journal.pone.0130985.t002
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Fig 3. Muscle properties of GAS, PLA, and SOL. The black curves indicate mean values, whereas the grey areas depict the standard deviations. First row:
force–length (fl) relation. Fim is the maximum isometric muscle force, lCC and lCCopt are the length and the optimal length of the contractile component,
respectively. To avoid muscle damage, the muscles were lengthened until passive forces reached about 0.2 Fim (marked with a white circle). Second row:
force–velocity (fv) relation. vCCmax is the maximal shortening velocity of the contractile component. Third row: Force–strain relation of the series elastic
component (SEC). ΔlSEC and lSEC0 are the length change and the slack length of the series elastic component, respectively. Last row: Force–strain relation of
the parallel elastic component (PEC). ΔlPEC and lPEC0 are the length change and the slack length of the parallel elastic component, respectively.

doi:10.1371/journal.pone.0130985.g003
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Fig 4. Force enhancement (FE) and force depression (FD) experiments. Typical experiments are shown for one GAS (m = 14.8 g), SOL (m = 3.3 g), and
PLA (m = 7.5 g), respectively. Exemplary isokinetic ramps are depicted for GAS in the top row; numbers without units indicate velocity in mean fascicle
lengths per second. FE (difference between black triangles) and FD (difference between white triangles) are the force difference between ramp experiment
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4.1 Comparison with literature: muscle properties
Mean muscle tensions of GAS, PLA, and SOL determined in this study are comparable to val-
ues between 14 and 20 N/cm2 observed for other small mammal muscles, e.g. rat SOL [53, 54],
rabbit SOL [43], rat GAS medialis [45], kangaroo rat PLA [55], or guinea pig SOL [53].

SOL maximum shortening velocity and curv value of the force–velocity relation (Table 2)
are similar to values reported for slow twitch muscles (vCCmax: 3–7 lCCopt/s, curv: 0.1–0.2, [13,
29, 56]). Higher shortening velocities and curv values of GAS and PLA agree with values
reported for fast twitch muscles (vCCmax: 9–20 lCCopt/s, curv: 0.3–0.5, [13, 56, 57]). These results
are in agreement with fiber type compositions of rabbit GAS (> 75% fast twitch fibers), PLA
(> 90% fast twitch fibers), and SOL (> 99% slow twitch fibers; [46, 58]).

The active force-length relation was described by the theoretical sarcomere force–length
relationship [12]. As demonstrated in recent studies [28, 59] this relation enabled the accurate
prediction of experimental rabbit and cat muscle forces. Winters [59] reproduced the active
force-length relations of rabbit TA, EDL, and extensor digitorum II based on myofilament
lengths using a scaled sarcomere model. In contrast, we fitted the experimental force-length
data using a piecewise linear equation. However, the results are consistent for the most part.
Starting from optimum muscle length, the rabbit muscles were able to shorten by 50% in both
studies. For lengthening muscle, force production is limited to 1.6 lCCopt in the scaled sarcomere
model, but reaches about 2 lCCopt for GAS, PLA, and SOL (Fig 3). Differences might be due to
more complex muscle architectures, especially of GAS and PLA (Fig 5, see Sect. 4.2), influenc-
ing the width of the force-length relation [60]. Also, to avoid muscle damage induced by high
passive forces, muscles in our study were lengthened only up to passive forces of about 0.2 Fim
(Fig 3, upper row, marked by a white circle). Thus, the slope of the descending limb of the force
length relation was determined using limited experimental data and should be considered with
caution. The change in slope at the ascending limb of the force-length relation is fixed at 0.7
Fim in the scaled sarcomere model, but appears at higher forces (fc = 0.85 Fim) in our measure-
ments. However, the change in slope of experimental TA force-length relations appears at

(black) and isometric reference contraction (grey) determined 500ms (GAS, PLA) and 1300ms (SOL) after the end of the ramp, shown exemplarily for the
slowest (0.35 lfm/s) ramp.

doi:10.1371/journal.pone.0130985.g004

Table 3. Muscle architecture of GAS, PLA, and SOL.

animal muscle mean pennation angle [°] mean fascicle length lfm [mm] ankle joint angle [°] knee joint angle [°]

R1 (m = 3.04 kg) GAS 16.6 ± 7.3 14.1 ± 2.2 94 75

PLA 16.1 ± 6.2 10.8 ± 2.1 94 75

SOL 15.8 ± 5.4 14.0 ± 2.2 94 75

R2 (m = 3.10 kg) GAS 14.5 ± 6.4 17.2 ± 3.3 93 91

PLA 14.8 ± 6.3 11.1 ± 2.5 93 91

SOL 12.0 ± 3.6 17.0 ± 2.2 93 91

R3 (m = 3.10 kg) GAS 12.3 ± 5.2 19.3 ± 3.2 92 70

PLA 11.1 ± 4.8 14.4 ± 3.1 92 70

SOL 11.3 ± 3.5 20.4 ± 3.1 92 70

Mean pennation angle and fascicle length determined from the left legs of three rabbits (R1, R2, R3) by manual digitization. 1838, 1773, and 1523

fascicles have been digitized for R1, R2, and R3, respectively. Their lengths and pennation angles are normally distributed. The muscle architecture is

exemplarily shown for R1 in Fig 5. Note that the complete 3D data are provided in the Supporting Information (S1–S12 Datasets).

doi:10.1371/journal.pone.0130985.t003
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Fig 5. Muscle architectures of GAS, PLA, and SOL of R1 left pelvic limb.Muscle fascicles of GASmedialis and lateralis are shown in light red and yellow,
respectively. The proximodistal axis corresponds to the mean force axis of the calf muscles, running frommean muscle origin at the humerus to the insertion
at the calcaneus. The corresponding 3D data of the muscle fascicles are provided in the Supporting Information (S2–S4 Datasets).

doi:10.1371/journal.pone.0130985.g005
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higher forces in the study of [59] (their Fig 3A) which is in agreement with our observations on
TA (S1 Table).

Series elastic structures exhibit a typical [6] nonlinear force-strain relationship (Fig 3, third
row). The mean maximum strain at Fim was 5.5% and 3.6% LSEC0 for PLA and SOL (Fig 3),
respectively, which is expected for tendinous tissue [61, 62]. The SEC of the GAS was more
compliant (7.7% strain at Fim). This may be due to a higher proportion of aponeuroses in the
muscle tendon complex which may be more compliant than tendons [63].

The standard deviations of the determined muscle properties are small, with the exception
of the force–strain relation of the parallel elastic component (Fig 3, lower row). This has also
been reported for other muscles [43, 64, 65] and may be related to variations in connective tis-
sues (fascia, epimysium, perimysium, endomysium) or titin-isoforms (e.g. [66]).

The behavior of the rabbit muscles observed in this study is mostly consistent with history
effects observed in other muscles. As found in our study, force enhancement is independent of
stretch velocity [67], and force depression decreases with increasing ramp velocity [30]. The
influence of these history effects on the determination of the muscle properties is discussed in
the Supporting Information (S2 Text).

Using the same experimental setup and conditions we found muscle specific differences in
the amount and in the ratio of force enhancement and force depression (Table 3, S1 Table).
These muscle specific properties might be explained by synthesis of different titin isoforms in
different rabbit muscles as reported by [66]. Interestingly, these differences in titin isoforms are
not related to the fiber type. Interaction of titin with the actin myofilament is assumed to be
responsible for the history dependence of muscle contractions [8, 27]. However, experimental
and modeling evidence is necessary to demonstrate the conceivable relation between muscle
specific titin isoforms and muscle specific history dependence of muscle contraction.

The mechanism and function of contraction history effects are a matter of scientific debate
[8, 33–35]. Force enhancement enables the muscle to withstand high forces during eccentric
contractions. Rode [27] suggested that force depression is an unwanted by-product of desired
force enhancement, and does not occur in stretch-shortening cycles associated with bouncing
gaits. The biarticular PLA has comparably short muscle fibers (Table 2) and long tendons, and
is appropriate to work as a spring during hopping [58, 68]. Indeed, PLA exhibits comparably
high force enhancement (Table 2) which enables generating high forces during eccentric con-
tractions. However, the primary function of muscles working as motors during locomotion,
e.g. the monoarticular SOL, is to produce positive work [41, 69, 70]. For these muscles force
depression seems to be counterproductive because it reduces positive work. Indeed, SOL exhib-
ited much lower force depression than GAS and PLA (Table 2). These findings support the
idea that history effects represent an adaptation to the specific muscle function [27].

4.2 Muscle architecture
Studies providing 3D architectural data of muscle packages consisting of several synergistic
muscles are rare. Using diffusion tensor imaging 3D muscle architecture of e.g. the human calf
[71], human thigh [72], human forearm [73] and mouse hindlimb muscles [74] have been
examined. The architecture of the human back [75] and cavy forelimb muscles [14] was deter-
mined by manual digitization. However, to the author’s best knowledge, there is no consistent
3D data set of the complete rabbit calf muscle architecture.

Measurements comparable to our experiments were performed on rabbit SOL [43]. The
authors examined ten SOL muscles using manual digitization and reported a mean fascicle
length of 16.6 ± 2.6 mm which is similar to our value obtained from three muscles (17.1 ± 2.6
mm). A slightly lower mean pennation angle (9.9 ± 2.8° vs. 13.0 ± 2.0°) might be due to smaller
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ankle joint angles reported in their study. In agreement with our results, Hiepe [76] reported
mean fascicle lengths of 16.2 ± 9.1 mm for rabbit GASmedialis using DTI. The higher standard
deviation in their study might be due to limitations of the diffusion tensor imaging method,
e.g. generated fiber tracts may cross muscle borders due to equally oriented adjacent structures,
resulting in artificial fascicle traces that are too long [16, 74].

There are few studies dealing with architectural measurements of the PLA [77–80]. None of
them utilizes the rabbit as animal model or provides 3D architectural data what makes a direct
comparison of fiber lengths and pennation angle impossible. Savelberg [78] mentioned that the
non-parallel arrangement of the aponeuroses inside the rat’s PLA features different pennation
angles and various fiber lengths. This is in agreement with our observations of the complex
bipennate rabbit PLA muscle architecture.

Models of muscle packages are required to understand transverse interaction of muscles
with each other [81–83] and with the skeleton, internal muscle forces, and the influence of
muscle architecture on contraction dynamics and muscle deformation. In addition to deviating
muscle architectures, observed significant differences in normalized dynamical muscle param-
eters suggest that it is important to use specific muscle parameters in neuromuscular models
aiming at understanding fundamental 3D muscle functions. The revelation of such fundamen-
tal 3D muscle functions may be relevant from a clinical perspective when assessing the effects
of muscle malfunction e.g. on the stabilization of joints during movement. Moreover, 3D mus-
cle models may contribute to a deeper understanding of widespread diseases as chronic low
back pain which are accompanied by several changes in the muscle structure as atrophy [84],
steatosis [85] or altered fiber type distribution [86].

Supporting Information
S2–S12 Datasets (except S5 and S9) can be processed using GID software (CIMNE, Barcelona,
Spain).
S1 Dataset. Rabbit R1: Origins and insertion of GAS, PLA, and SOL in txt-format.
(TXT)

S2 Dataset. Rabbit R1: GAS 3D muscle architecture in txt-format.
(TXT)

S3 Dataset. Rabbit R1: PLA 3Dmuscle architecture in txt-format.
(TXT)

S4 Dataset. Rabbit R1: SOL 3Dmuscle architecture in txt-format.
(TXT)

S5 Dataset. Rabbit R2: Origins and insertion of GAS, PLA, and SOL in txt-format.
(TXT)

S6 Dataset. Rabbit R2: GAS 3D muscle architecture in txt-format.
(TXT)

S7 Dataset. Rabbit R2: PLA 3Dmuscle architecture in txt-format.
(TXT)

S8 Dataset. Rabbit R2: SOL 3Dmuscle architecture in txt-format.
(TXT)

S9 Dataset. Rabbit R3: Origins and insertion of GAS, PLA, and SOL in txt-format.
(TXT)
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S2 Text. Influence of contraction history on the determination of muscle properties.
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